The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin
نویسندگان
چکیده
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.
منابع مشابه
ELUCIDATION OF pK VALUES FOR ACTIVE SITE OF HORSERADISH PEROXIDASE AND BINDING STUDY OF INTERACTION WITH N-PHENYL BENZHYDROXAMIC ACID USING A SPECIAL DIFFERENCE SPECTROPHOTOMETRIC TECHNIQUE
The binding behavior of a competitive inhibitor, N-phenylbenzhydroxamic acid (BHA) against horseradish peroxidase (HRP) was studied in order to understand and predict the interaction mechanism of hydrogen donors with the enzyme. The dissociation constants of the complexes of HRP-BHA, HRP-donor and HRP-BHA-azide were estimated at specified conditions by difference spectroscopy. The binding s...
متن کاملExploring the Interaction Mechanism of Coumarin with Bovine β-Casein: Spectrofluorometric and Molecular Modeling Studies
This paper is designed to examine the binding behavior of Coumarin with bovine -casein (βCN) through fluorescence spectroscopy and molecular modeling techniques. The data analysis on fluorescence titration experiments at various temperatures represents the enthalpy driven nature for the formation of Coumarin–βCN complex and the prevailed role of hydrogen bonds and van der Waals interactions in...
متن کاملFibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat
Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applyin...
متن کاملExploring the interaction of nanocomposite composed of Fe3O4, CaAl layered double hydroxide and lamivudine drug with Human serum albumin (HSA): Spectroscopic studies
In the present work, the interaction ofFe3O4@CaAl LDH@ Lamivudine with human serum albumin (HSA) was investigated by applying UV–vis and fluorescence spectra. The nanocomposite was quenching the natural fluorescence of HSA, which was indicated the static quenching mechanism. The consequences demonstrated that this nanocomposite can strongly bind to HSA molecules. According to fluorescence quenc...
متن کاملMechanically unfolding the small, topologically simple protein L.
beta-sheet proteins are generally more able to resist mechanical deformation than alpha-helical proteins. Experiments measuring the mechanical resistance of beta-sheet proteins extended by their termini led to the hypothesis that parallel, directly hydrogen-bonded terminal beta-strands provide the greatest mechanical strength. Here we test this hypothesis by measuring the mechanical properties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015